Transdimensional inverse thermal history modeling for quantitative thermochronology
نویسندگان
چکیده
منابع مشابه
thermochronology, and thermal modeling
[1] The southern flanks of the central Nepalese Himalaya correspond to a sharp transition in landscape morphology and bedrock mineral cooling ages that suggests a change in rock uplift rate. This transition can be explained by either (1) accretion of footwall material to the hanging wall across a ramp in the décollement separating India from Eurasia, thereby enhancing rock uplift rates above th...
متن کاملDatabases for Quantitative History
This paper will propose that, rather than sitting on silos of data, historians that utilise quantitative methods should endeavour to make their data accessible through databases, and treat this as a new form off bibliographic entry. Of course in many instances historical data does not lend itself easily to the creation of such data sets. With this in mind some of the issues regarding normalisin...
متن کاملQuantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds
The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...
متن کاملThermal Modeling for Predication of Automobile Cabin Air Temperature
Thermal modeling of an automotive cabin was performed in this paper to predict the inside cabin air temperature. To implement this task, thermal and ventilation loads were estimated and the mass and energy balance conservation equations for dry air and water vapor with considering a new parameter (air circulation ratio) as well as the balance equations of internal components of a cabin were de...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research: Solid Earth
سال: 2012
ISSN: 0148-0227
DOI: 10.1029/2011jb008825